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REAL AND IMAGINARY QUADRATIC REPRESENTATIONS 
OF HYPERELLIPTIC FUNCTION FIELDS 

SACHAR PAULUS AND HANS-GEORG RUCK 

ABSTRACT. A hyperelliptic function field can be always be represented as a 
real quadratic extension of the rational function field. If at least one of the 
rational prime divisors is rational over the field of constants, then it also can 
be represented as an imaginary quadratic extension of the rational function 
field. The arithmetic in the divisor class group can be realized in the second 
case by Cantor's algorithm. We show that in the first case one can compute 
in the divisor class group of the function field using reduced ideals and dis- 
tances of ideals in the orders involved. Furthermore, we show how the two 
representations are connected and compare the computational complexity. 

1. INTRODUCTION 

Let k be a field (not necessarily finite) whose characteristic is different from 2. 
We consider a hyperelliptic function field K over k of genus g, i.e. a quadratic 
extension of the rational function field over k of one variable. Then K can be 
generated over the rational function field by the square root of a polynomial of 
degree 2g + 1 or 2g + 2. 

We distinguish two cases. In the first case we assume K = k(x)(/F(x)), where 
F(x) E k[x] is a separable polynomial of degree 2g + 1. This can only be achieved if 
at least one of the ramified prime divisors in K/k(x) is rational over k. One calls K 
then an imaginary quadratic function field. The second case is K = K(t)(DX(t)), 
where D(t) E k[t] is a monic, separable polynomial of degree 2g + 2. This occurs 
if a prime divisor in k(t) splits into two extensions in K. Then K is called a real 
quadratic function field. We neglect here the case that the leading coefficient of the 
polynomial D(t) is not a square in k*. A constant field extension of degree 2 over 
k leads to our second case. 

We want to express in both cases the arithmetic in the (degree 0) divisor class 
group of K in terms of reduced ideals in the corresponding orders k[x][VF(xA)], 
resp. k[t][ D(t)]. The imaginary quadratic case is well known [2, 4, 6]. We list 
it here for sake of completeness and because we want to compare it to the second 
case. If K is a real quadratic function field, we show that the reduced ideals plus 
some natural numbers represent uniquely the elements of the divisor class group of 
K. These extra natural numbers are closely related to the distance between two 
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ideals [9]. This representation allows an efficient realization of the addition in the 
divisor class group even if no ramified prime is rational over k. We emphasize that 
always the divisor class group of the function field and not the ideal class group of 
the orders involved is at the center of our interest. 

The common object in both cases is the function field K. It is independent of 
the generating polynomials and orders involved. Any imaginary quadratic function 
field can be viewed as a real quadratic function field. The converse is only true if 
at least one ramified prime is rational over k. We explain this correspondence in 
abstract algorithmic terms. From this one can deduce explicit formulae which were 
found for fields of genus 1 in an ad hoc construction [1, 9]. 

2. THE FUNCTION FIELD K 

Let K be a function field over k of genus g. We denote by Divo (K) the group 
of divisors of degree 0. The group of principal divisors P(K) = {(f) I f E KJ* } is 
a subgroup of Divo(K) and the factor group Clo(K) = Divo(K)/P(K) is called 
the divisor class group (of degree 0) of K. We denote by [D] E Clo(K) the class of 
D E Divo(K). For details in the theory of function fields we refer to [10]. 

We fix an effective divisor D:o of degree g. If D E Divo (K) is any divisor, the 
Riemann-Roch theorem yields that dim(D + D,C) > 1, i.e. there is a function f E 

K* and an effective divisor Do of degree g such that (f) = Do - (Doc + D). Hence 
any divisor class [D] E Clo(K) has a representative of the form [D] = [Do -Do], 
where Do is an effective divisor of degree g. It remains a, problem to determine such 
a representative uniquely. This will be done in the next two sections, depending on 
special generators of K. 

3. K AS AN IMAGINARY QUADRATIC FUNCTION FIELD 

Let F(x) E k[x] be a separable polynomial of degree 2g + 1. Then K 
k(x)( /F(x)) is a function field over k of genus g. The pole divisor oo of x in 
k(x) is ramified under the extension to K; let POO be its extension in K. We fix 
*the divisor Doo := gPOO (cf. Section 2) and represent each elemeent of Clo(K) in the 
form [Do - gPO,]. If B is a divisor in K which is the conorm of a divisor of k(x), 
then deg(B) is even and B - deg(B)PO is a principal divisor. Therefore one can 
get rid of conorms in D0. Furthermore one cancels contributions of P,O in Do. One 
gets the well known result [2, 4, 6]: 

Proposition 3.1. Each divisor class [D] E Clo(K) has a unique representation 
of the form [D] = [A - deg(A)PT2], where A is an effective divisor of K with 
deg(A) < g which is divisible neither by POO nor by the conorm of a divisor of k(x). 

Above we showed the existence of such a divisor A. - The uniqueness follows from 
the fact that a function in K, whose pole divisor equals sPOO with 0 < s < 2g, is 
an element of k(x) (cf. the proof of the corresponding result in Section 4). 

Now we consider the Dedekind domain O(x) = k[x] [ F(x)] which is the integral 

closure of k[x] in K. Any ideal a c 0G9 can be given in the form 

a= T(x)(U(x)k[x] + (V(x) + F(x))k[x]) 
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with T(x),U(x),V(x) E k[x], where U(x) divides F(x) - V(x)2. If degV(x) < 
deg U(x) and if the leading coefficients of U(x) and T(x) are 1, then this rep- 
resentation by (T(x), U(x), V(x)) is unique. The degree of a satisfies deg(a) 
deg(U(x)T(x)2). 

Each prime ideal in O(') defines a valuation on K. Therefore one can associate 
with it a prime divisor of K. This gives an isomorphism from the group of ideals 
of O(') onto the group of divisors of K which are prime to POO (and induces an 
isomorphism between the ideal class group of O(x) and Clo(K)). Hence we can 
associate to each divisor A of Proposition 3.1 an ideal a C O(X) with deg(a) 
deg(A) < g which is not divisible by an ideal of the form T(x)O(x) with T(x) E k[x]. 

An ideal a which corresponds to a divisor A of Proposition 3.1 is called a reduced 
ideal. It has a unique reduced basis (U(x), V(x)) where the leading coefficient of 
U(x) is 1, degV(x) < degU(x) < g and U(x) divides F(x) - V(x)2. 

Now we formulate Proposition 3.1 in terms of ideals and get 

Theorem 3.2. There is a canonical bijection between the divisor class group 
Clo(K) and the set of reduced ideals in O(x). This bijection induces the follow- 
ing group law a * b = c on the set of reduced ideals: multiply the ideals a and b and 
let c be the unique reduced ideal in the ideal class of ab. 

One can make Theorem 3.2 explicit by working with the reduced bases of the 
ideals a, b and c. This gives the so-called Cantor algorithm [4], which for g = 1 
yields nothing else but the well known addition formulas for elliptic curves. 

4. K AS A REAL QUADRATIC FUNCTION FIELD 

Let D(t) E k[t] be a monic, separable polynomial of degree 2g + 2. Then K 

k(t)(VD(t)) is a function field over k of genus g. The pole divisor oo of t in k(t) 
decomposes into two different prime divisors P1 and P2 of K. Let v1 and v2 be the 
corresponding normalized valuations of K. 

We choose and fix the divisor Doo := gP2 (cf. Section 2) and represent each 
element of Clo(K) in the form [Do - gP2]. If B is a divisor in K which is the 
conorm of a divisor of k(t), then deg(B) is even and B - (deg(B)/2)(P1 + P2) is a 
principal divisor. With this remark we can cancel conorms in Do, and we get 

[Do -gP2] = [A + nPi -mP2], 

where A is an effective divisor in K which is not divisible by a conorm, by P1 or by 
P2. Since A is effective, n and m are integers with 0 < deg(A) + n = m < g. We 
change this slightly to 

[A + nPI -mP2] = [A-(m-rn)P2] + n[PI -P2] 

Proposition 4.1. Each divisor class [D] E Clo(K) has a unique representation 
of the form [D] = [A - deg(A)P2] + n[Pi - P2], where A is an effective divisor of 
K with deg(A) < g which is divisible neither by P1 or P2 nor by the conorm of a 
divisor of k(t), and where n is an integer with 0 < n < g - deg(A). 

Proof. We already saw the existence of a pair (A, n) with the demanded properties. 
Now we show that this representation is unique. We start with an identity 

[A1 - deg(AI)P2] + ni[PI - P2] = [A2 - deg(A2)P2] + n2[PI - P2], 
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where (Al, ni) and (Al, n2) satisfy the properties of the proposition. From this we 
see that 

A1 + A2 - (n2 + deg(A2) - nI)PI - (n1 + deg(A1) - n2)P2 (f) 

is a principal divisor in K. (Here - denotes the involution of K/k(t).) Since f has 
only poles at P1 or F2, it is of the form f = h(t) + g(t)VD(t) with polynomials 
h(t), g(t) E k [t]. We get 

vi(f) = -(n2 + deg(A2)) + ni > -g, 

and analogously 

vi(f) =V2(f) > -?i 

This gives 

-g < V"I(f - f) = (2g(t)\1 ), 

which induces -g < -(g + 1) + vi(g(t)) if g(t) zh 0. So obviously g(t) 0 and 
f = h(t) E k(t). Then A1 + A2 is a conorm. Since A1 and A2 do not contain any 
conorm by assumption, we get A1 = A2. Moreover, we must have 

n2 + deg(A2)- ni = ni + deg(Ai) -n2, 

which shows that n1 = n2. C 

Now we proceed as in Section 3. We consider the ring Ot)k[t][ /D(t)], which is 
the integral closure of k[t] in K. Any ideal a c oft) cani be given in the form 

a= S(t)(Q(t)k[t] + (P(t) + D(t))k[t]) 

with S(t), Q(t), P(t) E k[t], where Q(t) divides D(t)-P(t)2. If deg P(t) < deg Q(t) 
and if the leading coefficients of Q(t) and S(t) are 1, then this representation is 
unique. The degree of a satisfies deg(a) = deg(Q(t)S(t)2). If S(t) = 1, we call a a 
primitive ideal. Again we get a canonical isomorphism from the group of ideals of 

Kft) onto the group of divisors of K which are prime to P1 and P2. 
An ideal a c 0t) which corresponds to a divisor A with the properties of Propo- 

sition 4.1 is called a reduced ideal. It is an ideal a with deg(a) < g which is not 
divisible by an ideal of the form S(t)O(t) with S(t) E k[t], and it is therefore 
uniquely represented by the pair (Q(t), P(t)). 

We want to formulate Proposition 4.1 in terms of reduced ideals as in Section 3. 
We add two divisor classes given as in Proposition 4.1 and represent the sum again 
in the form 

[A1 - deg(A1)P2] + nm[PI - P2] + [A2 - deg(A2)P2] + n2[PI- P2 

- [A3 - deg(A3)P2] + n3 [PI -P2] 

It follows that 

A1 + A2 - A3 + (in1 + n2 - -13)PI + rnP2 (f) 

is a principal divisor in K. This yields, for the corresponding reduced ideals ai, 

al I2 =- f Q(t) 

and vI (f) =n + in2 - n3. 
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We now give a link to the infrastructure as defined in [7, 9]. We conlsider the 
following ideal in 2: 

{m E Z I m(Pi - P2) is a principal divisor} = RZ, 

where the generator R with R > 0 is called the regulator of 0ot). It is not difficult 
to see (cf. the end of the proof of Proposition 4.1) that either R 0 O or R > g + 1. 
If ab- fQ(t), we define the distance between a and b as 

d(b, a) := vi(f) mod RZ. 

We want to compute with small representatives of the residue class d(b, a); therefore 
we define for A cR 

d(b, a, A) := max{n c d(b, a) I n <}. 

With this notation we see that a, a2 and a3 are in the same ideal class of 0ot) with 
d(a3, alCa2, nl +n2)= n +n2-n3 . In the next theorem we will see how the distance 
determines a3 and n3 uniquely. 

Theorem 4.2. There is a canonical bijection between the divisor class group 
Clo(K) and the set of pairs {(a,n)}, where a is a reduced ideal of oft) and n 
is an integer with 0 < deg(a) + n < g. This bijection induces the following group 
law (aL,,ni) * (a2, n2)= (a3,n3) on the set of these pairs: multiply the ideals a, and 
a2, find in the ideal class of a,La2 a reduced ideal a3 such that d(a3, a1a2, nm + n2) is 
maximal, and define n3= ni + n2- d(a3, aCa2,n - + n2). 

Proof. The bijection follows immediately from Proposition 4.1 and the remarks 
preceding this theorem. We have to show that the group law is indeed given by 
this rule. 

Let A3 and n3 be the representatives of the sum given in Proposition 4.1. They 
satisfy in particular deg(A3) + n3< Kg. Suppose that the rule in the theorem gives 
a reduced ideal 63 and an integer i!3. Note that the maximality condition implies 
i3 < n3. Let A3 be the corresponding divisor. 

We compare the equation of the definition of A3 and n3 

A1 + A2- A3 + (n1 + n2- n3)PI + rnP2 (f) 

with the one coming from the rule in the theorem 

A1 + A2- A3 + (n1 + n2 - i!3)P1 + ?hP2 2 (), 

and we evaluate that 

A3 + A3 + (-i!3 + n3 - deg(A3))PI + (-n3 + m3 - deg(A3))P2 (h) 

is a principal divisor with 

v1 (h) =-deg(A3) + (n3 - in3) > -g 

and 

V2(h) =-(deg(A3) + n3) + n3 > -. 

Analogous calculations as in the proof of Proposition 4.1 show that h C k(t). This 
only occurs if A3 = A3 and in3 = n3. C 
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We remark that we did not use the ideal class group of ot) to represent the 
divisor class group. Here two different reduced ideals in the same ideal class group 
determine different elements in Clo0(K). 

In [7] and [91 the authors considered only a special subset of Clo(K), namely 
the set {(a, 0)}, where a are reduced ideals in of t). This so-called "infrastructure" 
describes only a part of Clo(K) which is not a subgroup. Theorem 4.2 shows how 
to extend this theory to recover all of Clo(K) for any genus. 

We show now how the group law can be computed in practice (cf. [7]). First, 
modify the basis of a reduced ideal a by changing P(t) modulo a multiple of Q(t) 
to P(t) such that 

- uI(P(t) - D(t)) < -vi (Q(t)) = deg Q(t) < -vi (P(t) + Dt)) 

One calls the (unique) pair (Q(t), P(t)) with these properties the redutced basis of 
a. 

We explain the ideal multiplication. Let a1 and a2 be two primitive ideals given 
by bases (QI (t), P1 (t)) anid (Q2 (t), P2(t)) respectively. We compute 

S3(t) = gcd(QI(t),Q2(t),P1(t) +P2(t)) and A(t),B(t),C(t) 

such that S3(t) = A(t)Q1(t) + B(t)Q2(t) + C(t)(PI(t) + P2(t)), 

Q3(t) = Q1(t)Q2(t)/S3 (t)2, 

P3(t) = PI(t) + 
Q (t) D (t) 

_ 
pt(t)2 mod Q3(t) 

3(A(t) (2 (t)) mdQ() Then (S3 (t), Q3 (t), P3 (t)) is a basis of a1 a2 . 
AVe explain the ideal reduction. The ideal reduction procedure is closely related 

to the computation of continued fractions. Let ao be ia primitive ideal given by a 
basis (Qo (t), PO (t)). Compute for i E N 

Pi (t) - L D(j- ((Pi- 1 (t) + L D(t) mod Q (t) 

Qi(t) = (D (t)-Pi.(t)2 ) lQi_ 1(t), 

where LID(t)j denotes the "polynomial part" of the expansion of D(t) in the 
completion Kp1.k((t- 1)). Then (Qi(t), Pi(t)) is a basis of a primitive ideal ai equiv- 
alent to a,i1. We write ai red(ali_). There is I C N with 

1 < max{0, 1/2 deg ao - (g + 1)/2 + 1 

such that a, is reduced. In this case (Qi+I(t), PI+,(t)) is the reduced basis of al+i. 
Denote fa= -fi = (Pi(t) - D(t)/Qi(t) for i > 0. We have fiai = ai-1 and 

vi1(fi) > 0 iff a,-1 is reduced. 
Given a reduced ideal a, there is a unique reduced ideal b such that red(b) = a. 

The formulas for computing the reduced basis of b from the reduced basis of a are 
easily deduced from the formulas above. We write red-1 (a) for b. For every reduced 
ideal b equivalent to a given reduced ideal a there is i E Z such that b = re& (a). If 
R = 0 this number is unique. 

Let b = red (a) for i E Z. We define the distance covered by reduction to be 

2(b, a) -'I "1(fredi (a)) if i > 0 and O(b, a) := +1 l1(fredi (a)) if i < 0. 
We clearly have O(b, a) C d(b, a). 
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Let a0 be a primitive ideal given by (Qo(t), Po(t)). Let lo > 0 be minimal such 
that redl" (a) is reduced. Then 

-deg Qo(t) < O(redlO (ao), ao) < 0. 

Let (a,, n1 ) and (a2, n2) be two representations of divisor classes and (a3, n3) its 
product as defined in Theorem 4.2. Let the product of a1 and a2 be represented by 
(S(t), Q(t), P(t)). Let 1 > 0 be maximal such that 

O(red' (a, a2/S(t)), a,a2/S(t)) < deg S(t) + ni + n2* 

Now it is easy to see that 

a3 = red1(aja2/(S(t))) 

and 

O(red'(a,a2/S(t)), a,a2/S(t)) = d(a3, a1a2, n1 + n2). 

Thus we showed how to compute the product in Theorem 4.2. One also sees that 
the number of reduction steps 1 = 1o + 11 is bounded by 

1< 5g + 1 
2' 

since lo < (g + 1)/2 and 11 < 2g. Similar considerations lead to the evaluation of 
the inverse of a divisor class. 

5. IMAGINARY VERSUS REAL QUADRATIC REPRESENTATION 

In this section we want to compare the imaginary quadratic and the real qua- 
dratic representation of the function field K. 

As in Section 4, let K = k(t)( jD(t)) with a monic, separable polynomial D(t) 
of degree 2g + 2. We suppose in addition that K/k(t) has a ramified prime divisor 
PO, which is rational over k. To PO, there corresponds a root o C k of D(t). 

We set x = (t-o)-1 and get k(x) = k(t). The divisor of x equals PI +P2 -2Po. 
An easy calculation shows that F(x) := D(x-1 + o1)x29+2 is a polynomial in k[x] 
of degree 2g + 1, and that K = k(x)(Fj(x)). 

Now we relate the representations of Theorem 3.2 and Theorem 4.2. Let [D] 
be a divisor class of K which is given by a pair (a(t), n) as in Theorem 4.2. Let 
(Q(t),P(t)) be the reduced basis of the reduced ideal a(t) of ot). We want to 
evaluate the corresponding reduced ideal a(x) of O(X) which represents [D] by The- 
orem 3.2. We calculate 

[D] = [A(t) -deg(A(t))P2] + n[Pi - P2] 

= [A(t) -deg(A(t))POj] + n[Pi - P,,] - (n + deg(A(t)))[P2 - Po]. 

It suffices to evaluate the reduced ideals aix) and their reduced basis (Ui(x), Vi(x)) 
for the summands [A(t) - deg(A(t))POj], [P1 - P,] and [P2 - P,]. The reduced 
basis (U(x), V(x)) of a(x) corresponding to the sum can then be evaluated using 
the Cantor algorithm (cf. Section 3). 

We start with [A(t) - deg(A(t))Pc,]. If P,O divides A(t), then Q(t) and P(t) 
have a simple zero at ae, and the reduced basis corresponding to the divisor class 
[(A(t) - Po) - deg(A(t) - Po)Po ] is (Q(t) (t - a)-1, P(t) (t - a) -1 ). Hence we 
assume that Q(oz) =h 0, and define 

UI(x) := Q(01)-1XdegQ(t)Q(x-1 + c1) 
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and 

VI (X) = X9+1P(X-1 + ce). 

U1 (x) and V1 (x) are polynomials in k [x]; U1 (x) is monic of degree deg Ui (x) = 

deg Q(t) = deg(A(t)). Let P be any prime divisor of K (with corresponding valua- 
tion vp) which is different from P1, P2 and PO,. Since vp(x) = 0, we calculate 

VP(Ui ()) Vp(Q(t)) 

and 

vp(VI(x) + F(x)) vp(P(t) + D(t)). 

Hence (Ul (x), VI (x)) is a basis of the reduced ideal a(X) corresponding to the class 
[A(t) - deg(A(t))PO,]. Finally one has to reduce VI (x) modulo Ul(x) to get the 
reduced basis of a(X) 

The reduced bases corresponding to [P1 - PO] and [P2 - PO] depend on the 
power series expansion of D(t) in the completion Kp, = k((t-1)) of K at Pi. 
We choose D(t)t9-1 + ... in Kpl; then (U2(x), V2(x)) = (x,-1) corresponds to 
[P1 - Po] and (U3(x), V3(x)) = (x, 1) to [P2- P,,]. This establishes the calculation 
of a(x). 

On the other hand, if one starts with the representation 

[D] = [A() - deg(A(x))Pc,] 

as in Theorem 3.2, then similar calculations yield the representation 

[D] = [A(t) - deg(A(t))P2] + n[Pi - P2]. 

An explicit realization of this procedure in the case of g = 1 produces the for- 
mulas in [1]. 

Finally, we compare the complexity of the multiplications in Theorem 3.2 and 
Theorem 4.2. All polynomials involved have degree < g + 1. We assume that mul- 
tiplication and division with remainder of two polynomials F(x) and G(x) require 
2 deg F(x) deg G(x) operations in k. Every reduction step applied to nonreduced 
ideals either in the Cantor algorithm [4] or in the algorithm presented in Section 4 
can then be c6mputed in 32g2 + 0(g) operations in k, whereas a reduction step 
applied to reduced ideals in the algorithm presented in Section 4 requires 6g2 + 0(g) 
operations in k. 

It follows that the computation of a basis of the primitive ideal a1a2/S(t) re- 
quires 4g3 + 0(g2) operations in k and the computation of the (first) reduced ideal 
redlO(a,a2/S(t)) equivalent to a1a2/S(t) requires 16g3+0(g2) operations in k, since 
one needs at most g/2 + 2 reduction steps to reduce aja2/S(t). In the imaginary 
quadratic case, we have a3 = redlo (a,a2/S(t)), and thus the complexity of comput- 
ing the product of two elements of the divisor class group is 2093 + 0(g2) operations 
in k, given an imaginary quadratic representation. 

In the real quadratic case, we have to execute first lo < (g + 1)/2 reduction steps 
to get from a1a2/S(t) to a reduced ideal and additionally 11 < 2g reduction steps 
to get to a3 as explained above. Thus the complexity of computing the product 
of two elements of the divisor class group is at most 32g3 + 0(g2) operations in k, 
given a real quadratic representation. 
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Let us remark that this analysis is far from being optimal and should not induce 
one to prefer the imaginary over the real representation. Indeed, a few practical 
experiments show that both arithmetics seem to be equally fast. 

Concluding, the arithmetic in the divisor class group of a hyperelliptic function 
field can be performed using either an imaginary quadratic representation whenever 
there is a ramified prime divisor in K/k(t) rational over k, or a real quadratic 
representation when there is no such prime divisor. In the latter case, the new 
method described in Section 4 is definitely preferable to the imaginary quadratic 
representation over a suitable constant field extension. 
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